Recently in a risk management meeting, I watched a data scientist explain to a group of executives why convolutional neural networks were the algorithm of choice to help discover fraudulent transactions. The executives—all of whom agreed that the company needed to invest in artificial intelligence—seemed baffled by the need for so much detail. “How will we know if it’s working?” asked a senior director to the visible relief of his colleagues.
Although they believe AI’s value, many executives are still wondering about its adoption. The following five questions are boardroom staples:
Organizational issues are never far from the minds of executives looking to accelerate efficiencies and drive growth. And, while this question isn’t new, the answer might be.
Captivated by the idea of data scientists analyzing potentially competitively-differentiating data, managers often advocate formalizing a data science team as a corporate service. Others assume that AI will fall within an existing analytics or data center-of-excellence (COE).
AI positioning depends on incumbent practices. A retailer’s customer service department designated a group of AI experts to develop “follow the sun chatbots” that would serve the retailer’s increasingly global customer base. Conversely a regional bank considered AI more of an enterprise service, centralizing statisticians and machine learning developers into a separate team reporting to the CIO.
These decisions were vastly different, but they were both the right ones for their respective companies.
Considerations:
When people hear the term AI they conjure thoughts of smart Menlo Park hipsters stationed at standing desks wearing ear buds in their pierced ears and writing custom code late into the night. Indeed, some version of this scenario is how AI has taken shape in many companies.
Executives tend to romanticize AI development as an intense, heads-down enterprise, forgetting that development planning, market research, data knowledge, and training should also be part of the mix. Coding from scratch might actually prolong AI delivery, especially with the emerging crop of developer toolkits (Amazon Sagemaker and Google Cloud AI are two) that bundle open source routines, APIs, and notebooks into packaged frameworks.
These packages can accelerate productivity, carving weeks or even months off development schedules. Or they can exacerbate collaboration efforts.
Considerations:
It’s all about perspective. AI might be positioned as edgy and disruptive with its own internal brand, signaling a fresh commitment to innovation. Or it could represent the evolution of analytics, the inevitable culmination of past efforts that laid the groundwork for AI.
I’ve noticed that AI projects are considered successful when they are deployed incrementally, when they further an agreed-upon goal, when they deliver something the competition hasn’t done yet, and when they support existing cultural norms.
Considerations:
Incumbent norms once again matter here. But when it comes to AI the level of disruption is often directly proportional to the need for a sponsor.
A senior AI specialist at a health care network decided to take the time to discuss possible AI use cases (medication compliance, readmission reduction, and deep learning diagnostics) with executives “so that they’d know what they’d be in for.” More importantly she knew that the executives who expressed the most interest in the candidate AI undertakings would be the likeliest to promote her new project. “This is a company where you absolutely need someone powerful in your corner,” she explained.
Considerations:
If you’re new to AI you’ll need to be careful about departing from norms, since this might attract undue attention and distract from promising outcomes. Remember Peter Drucker’s quote about culture eating strategy for breakfast? Going rogue is risky.
On the other hand, positioning AI as disruptive and evolutionary can do wonders for both the external brand as well as internal employee morale, assuring constituents that the company is committed to innovation, and considers emerging tech to be strategic.
Either way, the most important success measures for AI are setting accurate expectations, sharing them often, and addressing questions and concerns without delay.
Considerations:
These days AI has mojo. Companies are getting serious about it in a way they haven’t been before. And the more your executives understand about how it will be deployed—and why—the better the chances for delivering ongoing value.
Source : https://www.cio.com/article/3318639/artificial-intelligence/5-questions-ceos-are-asking-about-ai.html
Recent Comments